950 research outputs found

    LAPW vs. LMTO full-potential simulations and anharmonic dynamics of KNbO3

    Full text link
    With the aim to get an insight in the origin of differences in the earlier reported calculation results for KNbO3 and to test the recently proposed implementation of the FP-LMTO method by Methfessel and van Schilfgaarde, we perform a comparative study of the ferroelectric instability in KNbO3 by FP-LMTO and LAPW methods. It is shown that a high precision in the description of the charge density variations over the interstitial region in perovskite materials is essential; the technical limitations of the accuracy of charge-density description apparently accounted for previously reported slight disagreement with the LAPW results. With more accurate description of the charge density by sufficiently fine real-space grid, the results obtained by both methods became almost identical. In order to extract additional information (beyond the harmonic approximation) from the total energy fit obtainable in total-energy calculations, a scheme is proposed to solve the multidimensional vibrational Schroedinger equation in the model of non-interacting anharmonic oscillators via the expansion in hyperspherical harmonics.Comment: 11 pages, 2 figures, uses aipproc.sty. Presented at the Fifth Williamsburg Workshop on First-Principles Calculations for Ferroelectric

    Ab initio Simulations of Fe-based Ferric Wheels

    Full text link
    Based on first-principles density-functional theory calculations we investigate the electronic structure of hexanuclear "ferric wheels" M Fe_6[N(CH_2 CH_2 O)_3]_6 Cl (M = Li, Na) in their antiferromagnetic ground state. The electronic structure is presented in form of spin- and site-resolved local densities of states. The latter clearly indicate that the magnetic moment is distributed over several sites. The local moment at the iron site is still the largest one with about 4 mu_B, thus indicating the valence state of iron to be closer to Fe(II) than to commonly accepted Fe(III). The local spin of S=5/2 per iron site, following from magnetization measurements, is perfectly reproduced if one takes the moments on the neighbor atoms into account. The largest magnetic polarization is found on the apical oxygen atom, followed by nitrogen bridging oxygens. These findings are confirmed by a map of spatial spin density. A further goal of the present study has been a comparative test of two different DFT implementations, Siesta and NRLMOL. They yield a very good agreement down to small details in the electronic structure.Comment: 10 pages, 3 embedded postscript figures, to be published in Molecular Physics Reports (proceedings of the Summer School on New Magnetics - Bedlewo, Poland, September 2003). Two references update
    • …
    corecore